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ABSTRACT
This paper addresses the problem of minimizing a sum of fractional functions over a convex

set, where each fractional function is described by the ratio between a convex and a concave function.
Linear-fractional programming problems fall into this category as important special cases. Two global
optimization algorithms based on a suitable reformulation of the problem in the outcome space are pro-
posed. Global minimizers are obtained as the limit of the optimal solutions of a sequence of special
indefinite quadratic programs, solved by using a constraint enumeration procedure, according with the
first algorithm, and a sequence of special linear-fractional programs, solved by using a rectangular branch
and bound procedure, according to the second. Both algorithms exploit the relatively small number of
half-spaces needed for approximating the original problem in the outcome space. A comparison of the
algorithms based on some computational experiences is reported.

KEYWORDS. Global Optimization. Fractional Programming. Convex Analysis. Main Area:
Mathematical Programming.

RESUMO
Este trabalho aborda o problema de minimizar uma soma de funções fracionais sobre um con-

junto convexo, sendo que cada fração é descrita como a razão entre uma função convexa e uma função
côncava, ambas positivas sobre a região viável do problema. Dois algoritmos de otimização global basea-
dos numa reformulação adequada do problema no espaço das funções são propostos. Minimizadores
globais são obtidos como o limite das soluções ótimas de uma sequência de problemas quadráticos in-
definidos especiais, resolvidos por meio de um procedimento de enumeração de restrições, de acordo
com o primeiro algoritmo, e de uma sequência de problemas lineares-fracionais especiais, resolvidos
por meio de um procedimento branch and bound retangular, de acordo com o segundo algoritmo. Am-
bos algoritmos exploram o relativamente pequeno número de semi-espaços necessários para aproximar
o problema original no espaço das funções. Uma comparação entre os algoritmos baseada em algumas
experiências computacionais é relatada.

PALAVRAS-CHAVE. Otimização Global. Programação Fracionária. Análise Convexa. Área
Principal: Programação Matemática.
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1 Introduction

This paper addresses a class of generalized fractional programming problems, in which the ob-
jective is to minimize a sum of fractional functions over some feasible region. This class of nonconvex
problems mathematically describes many important applications in engineering, finance optimization,
decision making, and, more specifically, in multistage stochastic shipping problems (Almogy and Levin,
1970), bond portfolio optimization (Konno and Inori, 1989), hospital management (Mathis and Mathis,
1995), cluster analysis (Rao, 1971) and certain queuing location problems (Drezner et al., 1990), among
others. In particular, if each fractional function is a risk-to-profit measure, then by solving the problem
one seeks a compromise solution for a (possibly weighted) sum of risk-to-profit ratios.

The generalized fractional programming problem is known as a difficult optimization problem
which may have local minimizers that are not global minimizers. In this paper two approaches for
globally solving generalized fractional problems are proposed and tested. Problems of the following
form are considered:

min
x∈Ω

v(x) = min
x∈Ω

r

∑
i=1

pi(x)
qi(x)

, (1.1)

where pi : R
n → R, i = 1,2, ...,r, are convex and qi : R

n → R, i = 1,2, ...,r, are concave functions. It is
also assumed that

Ω = {x ∈ R
n : g j(x) ≤ 0, j = 1,2, ..., p},

is a nonempty compact convex set and that pi,qi, i = 1,2, ...,r, are positive functions over Ω. Generalized
linear-fractional problems are obtained when all the functions involved in the formulation (1.1) are linear.

The literature in fractional programming has been dominated by the the analysis of problems
with only one fraction since the early 1960’s (Schaible, 1995). However, since the 1980’s, a number of
different approaches for solving the generalized fractional problem, or one of its special cases, have been
proposed. The linear-fractional case has attracted special interest. In Konno et al. (1991), an algorithm
for globally solving problems containing only two fractions is proposed. The general algorithm proposed
in Quesada and Grossmann (1995) requires only that each numerator and each denominator is positive
over the feasible region. The image (outcome) space algorithm by Falk and Palocsay (1994) is suitable
for minimizing sums (or products) of fractions of linear functions.

Examples of algorithms that address the generalized fractional problem (1.1) are found in Konno
and Kunno (1990) (for the case of linear fractions) and Benson (2001) (for the case of nonlinear frac-
tions). In Konno at el. (1990), by using a parametric transformation, the authors obtain an equivalent
concave minimization problem, which is then solved through a cutting plane algorithm. Benson (2001)
introduces a branch and bound search procedure that globally solves the nonlinear fractional problem by
concentrating primarily on solving an equivalent outcome space problem.

In this paper, two global optimization algorithms based on a suitable reformulation of the problem
in the outcome space are proposed. Global minimizers are obtained as the limit of the optimal solutions of
a sequence of special indefinite quadratic programs solved by using a constraint enumeration procedure,
according with the first algorithm, and a sequence of special linear-fractional programs solved by using a
rectangular branch and bound procedure, according to the second. Both algorithms exploit the relatively
small number of half-spaces needed for approximating the original problem in the outcome space.

The paper is organized in six sections, as follows. In Section 2, the problem is reformulated in
the outcome space and an outer approximation approach for solving generalized fractional problems
is outlined. In Sections 3 and 4, respectively, the relaxation-constraint enumeration algorithm and the
relaxation-branch and bound algorithm are derived. A comparison of the algorithms based on some com-
putational experiences is reported in Section 5. Conclusions are presented in Section 6.

Notation. The set of all n-dimensional real vectors is represented as R
n. The sets of all nonnegative

and positive real vectors are denoted as R
n
+ and R

n
++, respectively. Inequalities are meant to be com-

ponentwise: given x,y ∈ R
n
+, then x ≥ y (x− y ∈ R

n) implies xi ≥ yi, i = 1,2, ...,n. Accordingly, x > y
(x− y ∈ R

n
++) implies xi > yi, i = 1,2, ...,n. The standard inner product in R

n is denoted as 〈x,y〉. If
f : R

n → R
m is defined on Ω, then f (Ω) := { f (x) : x ∈ Ω}. The symbol := means equal by definition.
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2 The Outcome Space Approach

The outcome space approach for solving generalized fractional problems is inspired in a simi-
lar approach recently introduced in Oliveira and Ferreira (2010) for solving generalized multiplicative
problems of the form

min
x∈Ω

v(x) = min
x∈Ω

r

∑
i=1

f2i−1(x) f2i(x), (2.1)

where fi : R
n → R, i = 1,2, ...,m, m := 2r, are convex positive functions over a nonempty compact

convex set Ω. It should be noted that although the product of any two convex positive functions is
quasiconvex, the sum of quasiconvex functions is not quasiconvex, in general. Therefore, problem (2.1)
may have local minimizers that are not global minimizers.

Since in the generalized fractional problem (1.1) the numerators pi : R
n → R, i = 1,2, ...,r, are

convex and the denominators qi : R
n → R, i = 1,2, ...,r, are concave positive functions over Ω and, con-

sequently, each function 1/qi(x) is convex and positive over Ω, it follows that the fractional programming
problem (1.1) can be reduced to the generalized multiplicative problem (2.1).

The objective function in (2.1) can be written as the composition u( f (x)), where u : R
m → R is

defined by

u(y) :=
r

∑
i=1

y2i−1y2i.

The function u can be viewed as a particular aggregating function for the problem of maximizing the
vector-valued objective f := ( f1, f2, ..., fm) over Ω (Yu, 1985). The image of Ω under f ,

Y := f (Ω), (2.2)

is the outcome space associated with problem (2.1). Since f is positive over Ω, it follows that u is strictly
increasing over Y and any optimal solution of (2.1) is Pareto-optimal or efficient (Yu, 1985). It is known
from the multiobjective programming literature that if x ∈ Ω is an efficient solution of (2.1), then there
exists w ∈ R

m
+ such that x is also an optimal solution of the convex programming problem

min
x∈Ω

〈w, f (x)〉. (2.3)

Conversely, if x(w) is any optimal solution of (2.3), then x(w) is efficient for (2.1) if w ∈ R
m
++. By

defining

W :=
{

w ∈ R
m
+ :

m

∑
i=1

wi = 1
}

,

the efficient set of (2.1) can be completely generated by solving (2.3) over W .
The outcome space formulation of problem (2.1) is simply

min
y∈Y

u(y) = min
y∈Y

r

∑
i=1

y2i−1y2i. (2.4)

The solution approaches which aim at solving problem (2.1) by solving its equivalent problem
(2.4) in the outcome space basically differ in the way of representing the nonconvex set Y . In Oliveira
and Ferreira (2010), a suitable representation is derived with basis on the following convex analysis
result, whose proof can be found in Lasdon (1970).

Lemma 2.1. Given y ∈ R
m, the inequality f (x) ≤ y has a solution x ∈ Ω if and only if y satisfies

〈w,y〉 ≥ min
x∈Ω

〈w, f (x)〉 for all w ∈ W , (2.5)

or, equivalently,
min
x∈Ω

〈w, f (x)− y〉 ≤ 0 for all w ∈ W .
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The above Lemma is instrumental for showing that problem (2.4) admits an equivalent formulation
with a convex feasible region.

Theorem 2.2. Let y� be an optimal solution of problem

min
y∈F

u(y), (2.6)

where
F :=

{
y ≤ y ≤ y : 〈w,y〉 ≥ min

x∈Ω
〈w, f (x)〉 for all w ∈ W

}
and

y
i
:= min

x∈Ω
fi(x) > 0, yi := max

x∈Ω
fi(x), i = 1,2, ...,m. (2.7)

Then y� is also an optimal solution of (2.4). Conversely, if y� solves problem (2.4), then y� also solves
problem (2.6).

Proof. See Oliveira and Ferreira (2010).

2.1 Relaxation Procedure

Problem (2.6) has a small number of variables, but infinitely many linear inequality constraints. An
adequate approach for solving (2.6) is relaxation. The relaxation algorithm evolves by determining yk,
a global maximizer of u over an outer approximation F k of F described by a subset of the inequality
constraints (2.5), and then appending to F k only the inequality constraint most violated by yk. The most
violated constraint is found by computing

θ(y) := max
w∈W

φy(w), (2.8)

where
φy(w) := min

x∈Ω
〈w, f (x)− y〉. (2.9)

Maximin problems as the one described by (2.8) and (2.9) arise frequently in optimization, engi-
neering design, optimal control, microeconomic and game theory, among other areas.

Lemma 2.3. y ∈ R
m satisfies the inequality system (2.5) if and only if θ(y) ≤ 0.

Proof. If y∈R
m satisfies the inequality system (2.5), then minx∈Ω 〈w, f (x)−y〉 ≤ 0 for all w∈W , imply-

ing that θ(y)≤ 0. Conversely, if y∈R
m does not satisfy the inequality system (2.5), then minx∈Ω 〈w, f (x)−

y〉 > 0 for some w ∈ W , implying that θ(y) > 0.

If θ(yk) > 0, then, as a byproduct, the optimal solution of the maximin problem (2.8)-(2.9) charac-
terizes the most violated inequality constraint. As the pointwise minimum of linear functions (indexed
by x ∈ Ω), φyk is a concave function. Therefore, θ(yk) is computed by solving a convex problem.

Some useful properties of θ and φ are discussed in Oliveira and Ferreira (2008, 2010). In particular,
f (x(w0))− y is a subgradient of φy at any w0 ∈ W , and the graph of φy lies on (or below) the graph
of the hyperplane φy(w0) + 〈 f (x(w0))− y,w−w0〉. This hyperplane is a supporting hyperplane to the
hypograph of φy, which enables piecewise linear approximations for φy. A l-th approximation for φy

would be
φl

y = min
1≤i≤l

{
〈w, f (x(wi))− y〉

}
. (2.10)

Problem (2.8) is then replaced with the problem of maximizing φl
y over W , which in turn can be

posed as the linear programming problem

max
w∈W ,σ

σ s. t. σ ≤ 〈w, f (x(wi))− y〉, i = 1,2, ..., l. (2.11)

Let (wl+1,σl+1) be the optimal solution of the linear program (2.11). If σl+1 −φ(wl+1) is less than
a prescribed tolerance, then θ(y) := σl+1. Otherwise, a new subgradient f (x(wl+1))− y) is obtained by
solving the convex problem in (2.9) and the procedure repeated.
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2.2 Basic Algorithm

Consider the initial polytope

F 0 :=
{

y ∈ R
m : 0 < y ≤ y ≤ y

}
, (2.12)

where y and y are defined in (2.7). The computations of y and y demand m convex and m concave
minimizations. While the computation of y is relatively inexpensive, the computation of y requires
the solution of m nonconvex problems. However, the usual practice of setting the components of y
sufficiently large has been successfully applied.

It is readily seen that the minimization of u over F 0 is achieved at y0 = y. The utopian point y0

rarely satisfies the inequality system (2.5), that is, θ(y0) > 0, in general. By denoting as w0 ∈ W the
corresponding maximizer in (2.8), one concludes that y0 is not in (most violates) the supporting negative
half-space

H 0
+ =

{
y ∈ R

m : 〈w0,y〉 ≥ 〈w0, f (x(w0))〉
}

. (2.13)

An improved outer approximation for F is F 1 = H 0
+ ∩F 0. If y1 that minimizes u over F 1 is also

such that θ(y1) > 0, then a new supporting positive half-space H 1
+ is determined, the feasible region of

(2.6) is better approximated by F 2 = F 1 ∩H 1
+, and the process repeated. At an arbitrary iteration k of

the algorithm, the following relaxed program is solved:

min
y∈F k

u(y). (2.14)

Problem (2.14) is a linearly constrained problem of the form

min
y≤y≤y

u(y) s. t. A(k)y ≥ b(k), (2.15)

where A(k) ∈ R
k×m,b(k) ∈ R

k,y ∈ R
m and y ∈ R

m characterize the matrix representation of F k.

3 A Relaxation-Constraint Enumeration Algorithm

A direct application of the results of the previous section leads to a relaxation-constraint enumer-
ation algorithm for the generalized fractional problem. Defining q̃i := 1/qi, i = 1,2, ...,r, problem (1.1)
can be rewritten as

min
x∈Ω

v(x) = min
x∈Ω

r

∑
i=1

pi(x)q̃i(x), (3.1)

which assumes the form (2.1) with the identifications f2i−1 = pi and f2i = q̃i for i = 1,2, . . . ,r. The k-th
outer approximation of (1.1) in the outcome space is given by (2.15), where u is the quadratic function

u(y) =
1
2

yT Qy, (3.2)

Q =

⎡
⎢⎢⎢⎢⎢⎣

0 1 · · · 0 0
1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦ , Q ∈ R

m×m.

As the matriz Q has r positive (equal to 1) and r negative (equal to −1) eigenvalues, it can be shown
that at least r constraints will be active at any optimal solution of the indefinite quadratic problem (2.15).
Due to the small number of constraints generated by the relaxation procedure, problem (2.15) can be
efficiently solved by constraint enumeration (Horst et al., 1995). In addition, only combinations of at
least r constraints that include the one most violated by yk need to be considered at iteration k + 1. The
relaxation-constraint enumeration algorithm for globally solving the generalized fractional problem (1.1)
assumes the structure below.
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Algorithm 1

Step 0: Find F 0 and set k := 0;

Step 1: Solve the indefinite quadratic problem

min
y∈F k

1
2

yT Qy,

obtaining yk;

Step 2: Find θ(yk) by solving the maximin subproblem (2.8)-(2.9). If θ(yk) < ε, where ε > 0 is a small
tolerance, stop: yk and x(wk) are ε-optimal solutions of (2.4) and (1.1), respectively. Otherwise,
define

F k+1 := {y ∈ F k : 〈wk,y〉 ≥ 〈wk, f (x(wk))〉},

set k := k +1 and return to Step 1.

The infinite and finite convergence properties of Algorithm 1 are analogous to those exhibited by the
algorithm derived in Oliveira and Ferreira (2010) for generalized multiplicative programming.

4 A Rectangular Branch and Bound Algorithm

An alternative to the reduction of the generalized fractional problem (1.1) to the form (2.1) is the
explicit consideration of the fractional terms. The associated outcome space formulation would be

min
(y,z)∈Y

v(y,z) = min
(y,z)∈Y

r

∑
i=1

yi

zi
, (4.1)

where
Y := {(y,z) ∈ R

r ×R
r : y = p(x), z = q(x), x ∈ Ω},

p := (p1, p2, . . . , pr) and q := (q1,q2, . . . ,qr). Proceeding similarly, it can be shown that (4.1) is equiva-
lent to the problem

min
(y,z)∈F

v(y,z) = min
(y,z)∈F

r

∑
i=1

yi

zi
, (4.2)

where
F :=

{
(y,z) ∈ R

r ×R
r : y ≥ p(x), z ≤ q(x), for some x ∈ Ω

}
.

The corresponding version of Lemma 2.1 would be as follows.

Lemma 4.1. (y,z) ∈ F if and only if (y,z) satisfies the semi-infinite inequality system

min
x∈Ω

{
r

∑
i=1

wi(pi(x)− yi)−
m

∑
i=r+1

wi(qi(x)− zi)

}
≤ 0 for all w ∈ W . (4.3)

The results of Section 2 then lead to the following k-th outer approximation for problem (1.1):

min
y≤y≤y
z≤z≤z

v(y,z) s. t. A(k)
y y+A(k)

z z ≥ b(k), (4.4)

where A(k)
y ∈ R

k×r, A(k)
z ∈ R

k×r, b(k) ∈ R
k, y,y ∈ R

r and z,z ∈ R
r are defined accordingly.

Let R denote either the initial rectangle F 0 :=
[
y,y

]
× [z,z], or a subrectangle of it. In each

subrectangle, any feasible point of (4.4) provides an upper bound for the optimal value of (4.4). In
Adjiman et al. (1995), the authors discuss a convex lower bound for the linear fractional term x/y inside
a rectangular region [xL,xU ]× [yL,yU ], where xL,xU ,yL and yU are the lower and upper bounds on x and
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y, respectively. Fractional terms of the form x/y are underestimated by introducing a new variable ξ and
two inequalities which depend on the bounds on x and y. By using the ideas described in Adjiman et al.
(1995), a lower bound for the optimal value of (4.4) can be obtained by solving the following convex
programming problem:

min
r

∑
i=1

ξi

s. t. A(k)
y y+A(k)

z z ≥ b(k),

ξi ≥
yL

i

zi
+

yi

zU
i

−
yL

i

zU
i

, i = 1,2, ...,r,

ξi ≥
yU

i

zi
+

yi

zL
i
−

yU
i

zL
i

, i = 1,2, ...,r,

(y,z) ∈ R ,

(4.5)

where yL
i ,y

U
i ,zL

i and zU
i (i = 1,2, . . . ,r) are the bounds on the variables yi and zi in some subrectangle

R . The rectangular branch and bound algorithm for globally solving the k-th outer approximation of the
generalized fractional problem (1.1) assumes the structure below. Convergence results for rectangular
branch and bound algorithms can be found in Benson (2002).

Branch and Bound Algorithm

Step 0: Find F 0 and set k = 0.

Step 1: Define L0 := {F 0}, and let L0 and U0 be a lower and an upper bound for the optimal value
of problem (4.4), which are found by solving problem (4.5) with R = F 0.

Step 2: While Uk −Lk > ε,
i) Choose R ∈ Lk such that the lower bound over R is equal to Lk;
ii) Split R along one of its longest edges into RI and RII;
iii) Define

Lk+1 := (Lk −{R })∪{RI,RII},

and Lk+1 and Uk+1 as the minima lower and upper bounds over all subrectangles R ∈ Lk+1.
iv) Set k := k +1.

5 Computational Experiments

Algorithms 1 and 2, which solve outer approximations of generalized fractional problems through
constraint enumeration and branch and bound procedures, respectively, were coded in MATLAB (V.
7.0.1)/Optimization Toolbox (V. 4) and run on a personal Pentium IV system, 2.00 GHz, 2048MB RAM.
The tolerances for the ε-convergences of Algorithm 1 and 2 were fixed at 10−5. The tolerance for
the convergence of the branch and bound algorithm was fixed at 0.05, respectively. In order to illustrate
some properties of global optimization algorithms proposed, the following illustrative example discussed
in Benson (2001) has been considered:

v(x1,x2) :=
x1 +3x2 +2
4x1 + x2 +3

+
4x1 +3x2 +1
x1 + x2 +4

,

Ω :=
{

(x1,x2) | 3x2
1 + x2

2 ≤ 48, x1 + x2 ≥ 1, x1,x2 ≥ 0
}

.

It can be shown that the feasible region Ω is a nonempty compact convex set, and also that p1,q1, p2

and q2 are positive over Ω. The lower and upper bounds on p1,1/q1, p2 and 1/q2 over the feasible region
are (3,0.0490,4,0.0833) and (23.1660,0.2500,27.2298,0.2000).

The global minimizer reported in Benson (2001) is xBenson = (1.000,0.000), and was found by ap-
plying a bisection search which demanded 17 bisections. The corresponding optimal value of problem
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(1.1) is vBenson = 1.428571. The same global minimizer was found by Algorithm 1, in 8 iterations, and
by Algorithm 2, in 5 iterations. Their convergences are reported in Tables 1 and 2, respectively. Table 3
details some aspects of the convergence of Algorithm 2, the number of branches needed and the lower
and upper bounds at each outer approximation of the generalized fractional problem.

Algorithms 1 and 2 converged in 3.8 and 4.3 seconds, respectively. The CPU time of Algorithm 2
tends to increase more rapidly as the number of fractional terms, r, increase, because the computational
effort demanded by the branch and bound algorithm grows exponentially with r. The influence of r in
the behaviour of Algorithm 1 is less noticeable.

Table 1: Convergence of Algorithm 1
k yk

1,y
k
2,y

k
3,y

k
4 wk x(wk) θ(yk)

0 (3.0000,0.0489,4.0000,0.0833) (0.3333,0.0000,0.6667,0.0000) (0.0000,1.0000) 0.6667
1 (3.0000,0.0489,5.0000,0.0833) (0.0043,0.0000,0.0085,0.9872) (1.1505,0.0000) 0.1152
2 (5.0000,0.0489,4.0000,0.2000) (0.0000,0.8708,0.1292,0.0000) (0.1580,0.8420) 0.1724
3 (3.0000,0.0489,5.3349,0.1971) (0.0682,0.9318,0.0000,0.0000) (1.0840,0.0000) 0.0871
4 (4.2787,0.0489,5.3349,0.1916) (0.0000,0.9822,0.0178,0.0000) (1.1183,0.0000) 0.0858
5 (3.0010,0.1424,4.9995,0.2000) (0.0000,0.9413,0.0587,0.0000) (0.9590,0.0410) 4.7564e-004
6 (3.0000,0.1425,5.0064,0.1999) (0.0744,0.9256,0.0000,0.0000) (1.0272,0.0000) 3.7073e-004
7 (3.0000,0.1429,5.0000,0.2000) (0.0383,0.0000,0.0000,0.9617) (1.0000,0.0000) 1.3745e-006

Table 2: Convergence of Algorithm 2
k yk

1,z
k
1,y

k
2,z

k
2 wk x(wk) θ(yk,zk)

0 (3.0000,20.4356,4.0000,12.0000) (0.0000,0.5000,0.5000,0.0000) (4.0000,0.0000) 7.2178
1 (3.0000, 6.0000,4.0000,12.0000) (0.0833,0.0000,0.1667,0.7500) (0.0000,1.0000) 5.4167
2 (3.0000, 7.0817,5.0889, 5.0198) (0.8000,0.2000,0.0000,0.0000) (1.0000,0.0000) 0.0163
3 (3.0204, 7.0817,5.0889, 5.0220) (0.5000,0.1315,0.0000,0.5000) (1.0000,0.0000) 8.0243e-004
4 (3.0222, 7.0817,5.0889, 5.0222) (0.4250,0.0000,0.0300,0.5450) (1.0000,0.0000) -4.8601e-012

Table 3: Convergence of the Branch-and-Bound Algorithm
k Number of branches needed LB (lower bound) UB (upper bound) UB-LB

0 – – – –
1 8 0.8333 0.8634 0.0301
2 7 1.4286 1.4745 0.0459
3 8 1.4286 1.4745 0.0459
4 7 1.4286 1.4745 0.0459

6 Conclusions

Two algorithms for globally solving generalized fractional problems were proposed in this paper.
Additional experiences involving a number of test problems from the literature have shown that both
algorithms are among the most efficient algorithms for the class of optimization problems considered.
Algorithm 1 seems to be particularly attractive due to the special properties of the indefinite quadratic
problem that has to be solved at each iteration. On the other hand, Algorithm 2 can be directly adapted
for solving the related problem of maximizing a generalized fractional function over a convex set. This
extension and specializations of the algorithms for linear-fractional problems are under current investi-
gation by the authors.
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