
XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

Assembling a New and Improved Transposition Distance Database

Jamile Gonçalves, Letícia R. Bueno, Rodrigo A. Hausen
CMCC, Universidade Federal do ABC (UFABC)

Santo André – SP – Brazil
jamile.goncalves@aluno.ufabc.edu.br, leticia.bueno@ufabc.edu.br, hausen@compscinet.org

ABSTRACT
Determining the transposition distance of permutations is NP-hard, but the problem of
the transposition diameter is still open and it is known only for n ≤ 15. Previously,
every diametral permutation for n ≤ 13 was found, but only a few instances have been
described for n = 14 and 15. In this work, we calculate the transposition distance of every
permutation for n ≤ 14 via a breadth-first search on the Cayley graph of permutations of
n elements, using toric equivalences to reduce the search space. As a consequence, we have
determined and identified all diametral permutations for n = 14. We also provide a look-up
table having the distance of every permutation of up to 14 elements.
KEYWORDS. Bioinformatics, Genome rearrangement, Transposition diame-
ter.
Main area: OC - Combinatorial Optimization

1. Introduction
Recent technological advances allowed the extraction of a large amount of information about
the molecular biology of organisms. This availability has given rise to many methods for
genome comparison, most of which aim to produce a number – the distance – that expresses
how closely related two organisms are. The distance between two species is specially relevant
in the study of the evolution of the species and for the reconstruction of phylogenetic trees.

Rearrangement of large portions of a genome is common [Nadeau and Taylor(1984),
Palmer and Herbon(1988)]. Therefore, one method used to determine the distance between
genomes of two different species compares large portions of their genomes, and it determines
the distance between them by applying a series of successive rearrangements to the order
of the blocks of genes of the first genome until the second one is obtained. This distance
is called rearrangement distance and consists of the minimum number of mutations needed
to transform a genome into another. The reason for adopting the minimum number of
mutations comes from the parsimony hypothesis, which assumes that the most parsimonious
scenario is the one that requires the least amount of changes.

In the genome model we will consider in this paper, a chromosome π with n genes
is represented by a permutation π = [π1π2 . . . πn] of integers between 1 and n, where each
element πi represents a gene. We assume that there are not repeated genes, therefore the
permutation π does not have repeated elements as well. The permutation [n n − 1 . . . 2 1]
is called the reverse permutation and the permutation [1 2 . . . n− 1 n] is called the identity
permutation.

Distinct rearrangement events affect portions of genes in different ways. One of
these events is the transposition, which is an operation that moves a block of genes from a
region to another inside the same chromosome. The biological meaning for a transposition is
a duplication of a block of genes followed by the removal of the original block [Boore(2000)].
Figure 1 shows the transformation of the reverse permutation into the identity permutation
for n = 5 using transpositions.

2355

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

? ? ?
[5 4 3 2 1] −→ [5 2 1 4 3] −→ [1 4 5 2 3] −→ [1 2 3 4 5]

Figure 1: One way to transform the reverse permutation of 5 elements into the identity
permutation by transpositions.

Given a permutation π, the transposition distance problem consists of
determining the minimum number of transpositions needed to transform π into
the identity permutation. The transposition distance of π, denoted by d(π),
is a relevant evolutionary measure [Boore(2000), Sankoff et al.(1992)] and sev-
eral approximation and heuristic algorithms have been proposed for this prob-
lem [Bafna and Pevzner(1995), Benoît-Gagné and Hamel(2007), Elias and Hartman(2006),
Feng and Zhu(2007), Gu et al.(1999), Hartman and Shamir(2006)]. Other works
have focused in estimating bounds for the transposition distance of a permuta-
tion [Christie(1999), Elias and Hartman(2006), Eriksson et al.(2001), Hausen et al.(2010),
Labarre(2006)]. However, tight bounds for the transposition distance remain to be
found in the general case, and only recently it was proved that the problem is NP-
hard [Bulteau et al.(2011)].

The largest transposition distance of any permutation of n elements is called
the transposition diameter and is denoted by D(n). The values of the transposition
diameter are determined only for n ≤ 15 and n = 17 [Sloane(2013), Eriksson et al.(2001),
Meidanis et al.(1997)]. For n = 16 and n > 17, [Meidanis et al.(1997)] and
[Elias and Hartman(2006)] provide the best known lower bounds, respectively bn/2c + 1
for n even and bn/2c+ 2 for n odd; for the upper bound, b(2n− 2)/3c is currently the best
one [Eriksson et al.(2001)]. However, tight bounds are not known yet and the computational
complexity of determining the transposition diameter remains open.

The difficulty of establishing the transposition diameter is shown in the
number of conjectures and in results that were, later, shown to be incorrect. It is
known [Meidanis et al.(1997)] that the distance of the reverse permutation is bn/2c + 1
for n > 2, and that was conjectured as the transposition diameter. This conjecture was
later proven invalid [Eriksson et al.(2001)] in the general case, for there are permutations
for n = 13 and n = 15 whose distance is bn/2c + 2. From these permutations,
[Elias and Hartman(2006)] showed how to construct permutations for n odd whose distance
is bn/2c + 2. Later, [Lu and Yang(2010)] postulated that, for large values of n, there are
permutations – called super-bad permutations – whose transposition distance is greater than
the distance of the reverse permutation. However, [Cunha et al.(2012)] showed that there
are no super-bad permutations. The Table 1 summarizes the results about the transposition
diameter.

A permutation π of n elements is called diametral if d(π) = D(n). Every
diametral permutation for n ≤ 13 is known [Meidanis et al.(1997), Eriksson et al.(2001),
Galvão and Dias(2011b)], but only a few instances have been described for n ≥
14 [Eriksson et al.(2001), Elias and Hartman(2006)]. In this work, we calculate the
transposition distance of every permutation for n ≤ 14 via a breadth-first search on the
Cayley graph of permutations of n elements, using toric equivalences to reduce the search
space. As a consequence, we have identified all diametral permutations for n = 14.

In Section 2., we give some definitions used in our algorithm, which is presented in
Section 3. Computational results are discussed in Section 4. Finally, some conclusions and
open problems are discussed in Section 5.

2356

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

Table 1: Known values and bounds for the transposition diameter

n Transposition Diameter D(n) References
3 ≤ n ≤ 12 D(n) = bn/2c+ 1 [Bafna and Pevzner(1995)]

[Meidanis et al.(1997)]
13 D(n) = bn/2c+ 2 [Eriksson et al.(2001)]
14 D(n) = bn/2c+ 1 [Eriksson et al.(2001)]
15 D(n) = bn/2c+ 2 [Eriksson et al.(2001)]

n ≥ 16, even bn/2c+ 1 ≤ D(n) ≤ b(2n− 2)/3c [Meidanis et al.(1997)]
[Eriksson et al.(2001)]

17 D(n) = bn/2c+ 2 [Elias and Hartman(2006)]
n ≥ 17, odd bn/2c+ 2 ≤ D(n) ≤ b(2n− 2)/3c [Elias and Hartman(2006)]

[Eriksson et al.(2001)]

2. Preliminaries
In this section we introduce the definitions and results that will be used in the construction
of our algorithm.

2.1. Mathematical formalization

Let n be a fixed integer. A transposition t(i, j, k), where 1 ≤ i < j < k ≤ n + 1, is the
permutation [1 2 . . . i−1 j j+1 . . . k−1 i i+1 . . . j−1 k k+1 . . . n] — let the reader beware:
in group theory, the name “transposition” may also be used with another definition that
differs from ours.. A sequence of transpositions t(i1, j1, k1), t(i2, j2, k2) . . . , t(i`, j`, k`) sorts a
permutation π if π · t(i1, j1, k1) · t(i2, j2, k2) · · · t(i`, j`, k`) = ι, where the product “·” denotes
the composition of permutations as an action to the right.

The transposition distance of π, denoted d(π), is defined thusly:

d(π) := min{`;π · t(i1, j1, k1) · t(i2, j2, k2) · · · t(i`, j`, k`) = ι}.

The transposition diameter D(n) is the maximum transposition distance attained
by a permutation of n elements, i.e.,

D(n) := max{d(π);π is a permutation of n elements}.

2.2. The Cayley graph of transpositions

The Cayley graph of transpositions [Eriksson et al.(2001)], also known as the transposition
rearrangement graph [Hausen et al.(2010)] and denoted by TRG(n), is an undirected graph
whose vertex set is the set of all permutations of n elements. There is an edge between π
and σ in TRG(n) if, and only if, π · t(i, j, k) = σ for some transposition t(i, j, k). Figure 2
depicts TRG(3) and TRG(4). It follows immediately from the definition of TRG(n) that:

• a path between π and ι in TRG(n) corresponds to a sequence of transpositions that
sorts π;

• the length of a shortest path between π and ι in TRG(n) is d(π); and
• the diameter (greatest length of a shortest path between any two vertices) of
TRG(n) is D(n).

Therefore, both the transposition distance d(π) of a given permutation π and the
transposition diameter D(n) can be obtained by a breadth-first search (BFS) on TRG(n)

2357

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

that begins at ι. Unfortunately, the apparent simplicity of finding these two parameters
in TRG(n) is dispelled by the size of this graph – it has n! vertices and n!(n3−n)

12
edges [Hausen et al.(2010)]. Although there is not a known manner of searching TRG(n)
in an efficient way, i.e., one whose space and time complexity are at least polynomial in n,
in Section 2.3. we present the reduction of the Cayley graph that allowed us to obtain the
results in this paper.

123

213 231

312132

321

1 2 3 4

1 2 4 3 1 3 2 4 1 3 4 2 1 4 2 3 2 1 3 4 2 3 1 4 2 3 4 1 3 1 2 4 3 4 1 2 4 1 2 3

4 3 2 1

3 4 2 14 2 3 12 4 3 13 2 4 14 3 1 24 1 3 21 4 3 24 2 1 32 1 4 33 2 1 4

3 1 4 22 4 1 3

TRG(3)

TRG(4)

Figure 2: The Cayley graphs T RG(3) and T RG(4).

2.3. Reduction of a Cayley graph via toric classes

In order to show how a reduction of the Cayley graph is obtained, we must first lay
out some results. Given a permutation π and an integer x, the cyclic shift π + x is
defined [Eriksson et al.(2001)] as the permutation obtained by the following steps:
i) consider π = [π1π2 . . . πn] and π0 = 0;
ii) for i = 0 . . . n, calculate πi +x (mod n+ 1), i.e., the remainder of the division of πi +x

by n+ 1;
iii) let π + k = [γ1 . . . γn], where γi = π` + x, for ` = j + i (mod n+ 1), and j is such that

0 = πj + x (mod n+ 1).

Example 1 Calculate [132] + 2:
i) consider π0, π1, π2 and π3 respectively equal to 0, 1, 3 and 2;
ii) calculating πi + 2 (mod 4), we obtain 2, 3, 1 and 0, and;
iii) since π3 +2 = 0, we have j = 3, γ1 = π0 +2 = 2, γ2 = π1 +2 = 3, and γ3 = π2 +2x = 1,

therefore [132] + 2 = [231].

Two permutations π and σ are said to belong to the same toric class if σ = π + x

for some integer x such that 1 ≤ x ≤ n. Since [132] + 2 = [231], as in Example 1, both
permutations are in the same toric class.

Notice that ι+x = ι for every n and x, and that d(π) = d(π+x), since these cyclic
shifts just relabel π and ι in the same manner. Therefore, Theorem 1 is valid.

Theorem 1 [Eriksson et al.(2001)] If two permutations are in the same toric class, they
have the same distance to the identity.

2358

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

A toric class has at least one permutation (for instance, the toric class that contains
ι) and at most n + 1 permutations (such as the toric class in which [132], [312], [231] and
[213] belong). The number of elements in a toric class is always a divisor of n+1, and there
are exactly ϕ(n+1) classes that have only one element [Christie(1999), Hausen et al.(2010)],
where ϕ is Euler’s totient function.

The toric graph Tor(n) is a graph in which every vertex is a permutation of n
elements that represents a toric class, and two vertices π, σ are adjacent if, and only if,
there are two integers x and y such that π+x and σ+ y are adjacent in TRG(n). Figure 3
depicts the toric graphs Tor(3) and Tor(4).

1 2 3

2 1 3

3 2 1

1 2 3 4

2 1 3 4 3 4 1 2

2 4 1 3 3 1 4 2

2 1 4 3 4 3 1 2

4 3 2 1

Tor(3) Tor(4)

Figure 3: The toric graphs T or(3) and T or(4).

Notice that the length of any shortest path from a permutation π to ι is the same in
TRG(n) and in Tor(n), but Tor(n) has less vertices and edges. Therefore, the calculation
of distances via BFS is faster using the toric graph.

2.4. Reductions of permutations
Given a permutation π = [π1 π2 . . . πn], and considering π0 = 0 and πn+1 = n + 1, an
adjacency in π is a pair of consecutive elements πi, πi+1, where 0 ≤ i ≤ n, such that
πi+1 = πi + 1. If two consecutive elements are not an adjacency, they are a breakpoint. The
number of breakpoints in π is denoted by b(π). It follows that b(π) = 0 if, and only if,
π = ι.
Example 2 Let π = [3 4 1 2]. The breakpoints are the pairs: 0, 3 ; 4, 1 ; 2, 5. The
adjacencies are: 3, 4 and 1, 2.

Notice that it is always possible to sort any permutation without breaking any
adjacencies. Hence, a block of two or more consecutive elements that only have adjacencies
among them can be thought of as only one indivisible element. Given a permutation π, the
reduced permutation gl(π) is obtained from π by replacing every block of adjacent elements
with the smallest element in that block, and relabeling the elements according to their
lexicographic order [Christie(1999)].
Example 3 Considering π = [3 4 1 2], we replace the adjacency 3, 4 with 3, and 1, 2 with
1, obtaining [31]. Relabeling [31], we have gl(π) = [21].

Observe that, since there is no need to break adjacencies when sorting a
transposition, π and gl(π) always have the same distance. This property is used in
Algorithm 3.

3. An Algorithm for the Transposition Diameter
Algorithm 1 calculates the transposition distance of every permutation of n elements via
a BFS on Tor(n) starting at ι. Since it is currently impossible to store in memory an

2359

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

explicit representation of a toric graph where n > 13, we use two main data structures:
i) an array of n! nibbles (half byte) that serves the double purpose of marking the visited
permutations (along with their torically equivalent permutations, which are calculated in
the underlined lines in the Algorithm) and storing their respective distances; and ii) a queue
to store the ranks of the permutations that are going to be visited next. The edges are
dynamically calculated in the line that reads “for all transposition t. . . ”. In the end, the
array of distances is saved to a binary file, to be used in Algorithms 2 and 3.

Algorithm 1 (Calculates the transposition distance of every permutation of n elements)
Input: number of elements n
Output: binary file "distn.bin" with all transposition distances

let π be a permutation
let q be an empty queue
let "distn.bin" be a binary file
let d[0 . . . n!− 1] be an array of integers
for all permutation π with n elements do
d[rank(π)]←∞

π ← [1 2 3 ... n]
d[rank(π)]← 0
enqueue π in q

visited(π) ← true
while q not empty do
π ← first element of q
dequeue the first element of q
for all transposition t such that d[rank(π · t)] =∞ do
d[rank(π · t)]← d[rank(π)] + 1
k ← 1
while (π · t) + k is different from π · t do
d[rank((π · t) + k)]← d[rank(π · t)]
k ← k + 1

enqueue π·t in the end of q
save the array d in "distn.bin"

The binary files produced by Algorithm 1 serve as a look-up table for an oracle
for the transposition distance problem. The oracle loads the files to the main memory
(Algorithm 2), putting their data in a matrix form – or, rather, in the form of an array
of arrays. With a relatively simple look-up (Algorithm 3), it is possible to obtain the
distance of a permutation π for which d(π) or d(gl(π)) has already been computed before.
If the database does not have information about the permutation, which only occurs if
the permutation cannot be reduced to a permutation having 14 or a smaller number of
elements, the oracle returns “undetermined,” and it is up to the user of these algorithms to
decide what to do next.

4. Computational Results
We executed Algorithm 1 in one core of an Altix 4700 supercomputer (1.4GHz Intel
Itanium processor, 257GBytes of main memory) to compute the transposition distances
for all permutations of up to 14 elements. For n = 8 . . . 14, Table 2 shows runtime,

2360

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

Algorithm 2 (Loads the distances to main memory)
Input: integer N that is the greater n for which all distances were calculated; directory
dir, where are the distance files

Output: matrix N ×N !, the oracle
let m[1 . . . N][0 . . . N !− 1] be a matrix of integers
let d[0 . . . N !− 1] be an array of integers
for all n← 1 . . . N do
read array d do file "distn.bin" in the directory dir
for all r ← 0 . . . n!− 1 do
m[n][r]← d[r]

return m

Algorithm 3 (Queries the look-up tables)
Input: permutation π; matrix of distances m[1 . . . N][0 . . . N !− 1]
Output: transposition distance d(π) or “undetermined” if the distance is not known
n← number of elements of π
if n ≤ N then
return m[n][rank(π)]

else
π′ ← gl(π)
n← number of elements of π′
if n ≤ N then
return m[n][rank(π′)]

else
return “undetermined”

maximum number Q of permutations in the queue and the maximum memory usage in
bytes, considering n!/2 bytes for the array of distances and 8Q bytes for the queue.

Table 2: Maximum size of the queue and the runtime of the Algorithm 1

maximum queue size maximum memory
n runtime (no. of permutations) usage (bytes)
8 0, 38s 2869 43k
9 4, 54s 23366 360k
10 58, 99s 203951 3.3M
11 5m 33, 42s 2087612 35M
12 1h 26m 43.77s 22752393 402M
13 1d 6h 42m 276323066 5G
14 21d 3612427772 67.6G

We found the distribution of distances for n ≤ 14 (Tables 3 and 4). The distributions
for n ≤ 13 are identical to the distributions in [Galvão and Dias(2011b)]. This is the first
time the distribution of distances for n = 14 is computed.

2361

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

Table 3: Transposition distance distributions for permutations of n ≤ 12

d n
1 2 3 4 5 6 7 8 9 10 11 12

0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 4 10 20 35 56 84 120 165 220 286
2 1 12 68 259 770 1932 4284 8646 16203 28600
3 1 31 380 2700 13467 52512 170907 484440 1231230
4 45 1513 22000 191636 1183457 5706464 22822293
5 2836 114327 2010571 21171518 157499810
6 255053 12537954 265819779
7 31599601

Table 4: Transposition distance distributions for permutations of n = 13, 14

d n
13 14

0 1 1
1 364 455
2 48048 77441
3 2864719 6196333
4 78829491 241943403
5 910047453 4334283646
6 3341572727 29432517384
7 1893657570 47916472532
8 427 5246800005

5. Conclusions and Future Works
Determining the transposition distance of permutations is a NP-hard problem. On the
other hand, the transposition diameter problem is still open and it is known only for n ≤ 15
[Sloane(2013)].

In this paper, we computed the transposition distance for all permutations for n ≤
14 using Algorithm 1. As a consequence, we have determined and identified all diametral
permutations for n = 14 in O(n) time or, if the rank of the permutation is already known,
in O(1) time.

Previously, every diametral permutation for a given number of elements n has been
determined only for n up to 13 [Galvão and Dias(2011b)], and only a handful of examples
were known for n = 14 [Eriksson et al.(2001)]. We have managed to extend these results
for n up to 14 with the use of toric equivalences to reduce the search space, whereas the
approach by Galvão and Dias was a more direct implementation of a breadth first search on
a Cayley graph [Galvão and Dias(2011a)]. Our approach also differs from Eriksson et al.’s
approach, in that they have not listed every diametral permutation, proving instead that
the distance of a permutation of 14 elements cannot exceed that of the reverse permutation.

From the execution for n = 8 . . . 14, we can estimate the resources needed for
n = 15 (Figures 4 and 5) considering the exponential tendency for the curves in both
graphics. For n = 15, we would have a runtime of approximately 6 months and a queue

2362

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

7 8 9 10 11 12 13 14 15

0.01

0.1

1

10

100

1000

10000

100000

1000000

n

R
u
n

ti
m

e
(m

in
u

te
s)

Figure 4: Runtime for Algorithm 1 (log scale for the vertical axis).

7 8 9 10 11 12 13 14 15

100

10000

1000000

100000000

10000000000

1000000000000

n

m
ax

im
u
m

q u
eu

e
si

ze
(n

r.
o
f

p
er

m
u
ta

ti
on

s)

Figure 5: Maximum queue size for Algorithm 1 (log scale for the vertical axis).

of maximum size of roughly 30 × 109 permutations. Since each permutation occupies 8
bytes, the maximum size of the queue would be approximately 224Gigabytes. The distance
array would consume 15!/2 bytes, or 609Gbytes. Henceforth, the total amount of memory
needed to run Algorithm 1 for n = 15 is in the neighborhood of 833Gbytes. We conclude
that determining the diametral permutations for n = 15 via BFS is not feasible using the
current computers, but may become attainable in the next few years.

2363

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

Aside from the theoretical aspect, one practical use for the data obtained in this
study is as a look-up table for speeding-up algorithms for calculating the transposition
distance. We showed how the distance database can be used in an oracle for the
transposition distance problem (Algorithms 2 and 3). A sample implementation is available
at http://compscinet.org/research/tdd/.

We intend to use these results as a starting point to search for diametral
permutations of 15 and 16 elements, first generating candidates from the diametral
permutations of 14 elements, and then using an exact algorithm for the distance, aided by
our database, for winnowing the permutations whose distance is 9 or 10. This strategy is
embarrassingly parallel and will definitely establish the value of the transposition diameter
D(16). Another future development is the improvement of the library so that some queries
may be performed directly on disk, reducing the main memory footprint at the expense of
the look-up time; for instance, should only the distances for n ≤ 13 be loaded into main
memory, they would consume 3.15 Gbytes, well within the limitations of current desktop
computers.

Acknowledgment
The authors wish to thank Fundação Universidade Federal do ABC/CNPq for the
undergraduate research grant that funded this research (PIBIC-AF).

References
Bafna, V. and Pevzner, P. (1995). Sorting permutations by tanspositions. In Proceedings

of the sixth annual ACM-SIAM symposium on Discrete algorithms, SODA ’95, pages
614–623, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics.

Benoît-Gagné, M. and Hamel, S. (2007). A New and Faster Method of Sorting by
Transpositions Combinatorial Pattern Matching. In Ma, B. and Zhang, K., editors,
Combinatorial Pattern Matching, volume 4580 of Lecture Notes in Computer Science,
chapter 15, pages 131–141. Springer Berlin / Heidelberg, Berlin, Heidelberg.

Boore, J. L. (2000). The duplication/random loss model for gene rearrangement
exemplified by mitochondrial genomes of deuterostome animals. In Sankoff, D. and
Nadeau, J. H., editors, Comparative Genomics, pages 133–148. Kluwer Academic
Publishers.

Bulteau, L., Fertin, G., and Rusu, I. (2011). Sorting by transpositions is difficult. In
Proceedings of the 38th international colloquim conference on Automata, languages and
programming - Volume Part I, ICALP’11, pages 654–665, Berlin, Heidelberg. Springer-
Verlag.

Christie, D. A. (1999). Genome Rearrangement Problems. PhD thesis, University of
Glasgow.

Cunha, L. F. I., Kowada, L. A. B., de A. Hausen, R., and de Figueiredo, C.
M. H. (2012). Transposition diameter and lonely permutations. In de Souto, M. C. P.
and Kann, M. G., editors, BSB, volume 7409 of Lecture Notes in Computer Science,
pages 1–12. Springer.

Elias, I. and Hartman, T. (2006). A 1.375-approximation algorithm for sorting by
transpositions. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
3(4):369–379.

2364

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

Eriksson, H., Eriksson, K., Karlander, J., Svensson, L., and Wästlund, J. (2001).
Sorting a bridge hand. Discrete Mathemathics, 241(1):289–300.

Feng, J. and Zhu, D. (2007). Faster algorithms for sorting by transpositions and sorting
by block interchanges. ACM Transactions on Algorithms, 3(3).

Galvão, G. R. and Dias, Z. (2011a). Computing rearrangement distance of every
permutation in the symmetric group. In Proceedings of the 2011 ACM Symposium on
Applied Computing, SAC ’11, pages 106–107, New York, NY, USA. ACM.

Galvão, G. R. and Dias, Z. (2011b). On the distribution of rearrangement distances.
In BSB 2011 Digital Proceedings, pages 41–48, Brasília, Brazil.

Gu, Q.-P., Peng, S., and Chen, Q. M. (1999). Sorting permutations and its applications
in genome analysis. Lectures on Mathematics in the Life Science, 26:191–201.

Hartman, T. and Shamir, R. (2006). A simpler and faster 1.5-approximation algorithm
for sorting by transpositions. Information and Computation, 204(2):275–290.

Hausen, R. d. A., Faria, L., Figueiredo, C. M. H. d., and Kowada, L. A. B. (2010).
Unitary toric classes, the reality and desire diagram, and sorting by transpositions. SIAM
J. Discrete Math., 24(3):792–807.

Labarre, A. (2006). New bounds and tractable instances for the transposition distance.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 3(4):380–394.

Lu, L. and Yang, Y. (2010). A lower bound on the transposition diameter. SIAM Journal
on Discrete Mathematics, 24(4):1242–1249.

Meidanis, J., Walter, M. E. M. T., and Dias, Z. (1997). Transposition distance
between a permutation and its reverse. In Baeza-Yates, R., editor, Proceedings of 4th
South American Workshop on String Processing, pages 70–79. Carleton University Press.

Nadeau, J. H. and Taylor, B. A. (1984). Lengths of chromosomal segments conserved
since divergence of man and mouse. Proceedings of the National Academy of Sciences of
the United States of America, 81(3):814–818.

Palmer, J. D. and Herbon, L. A. (1988). Plant mitochondrial DNA evolves rapidly in
structure, but slowly in sequence. Journal of Molecular Evolution, 28(1–2):87–97.

Sankoff, D., Leduc, G., Antoine, N., Paquin, B., Lang, B. F., and Cedergren, R.
(1992). Gene order comparisons for phylogenetic inference: evolution of the mitochondrial
genome. Procedings of the National Academy of Sciences, 89(14):6575–6579.

Sloane, N. J. A. (2013). The on-line encyclopedia of integer sequences: Sequence a065603.
http://oeis.org/a065603.

2365

